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Fluctuation theorem for the flashing ratchet model of molecular motors

D. Lacoste' and K. Mallick®
"Laboratoire de Physico-Chimie Théorique, UMR 7083, ESPCI, 10 rue Vauquelin, 75231 Paris Cedex 05, France
Institut de Physique Théorique, CEA Saclay, 91191 Gif, France
(Received 5 March 2009; published 20 August 2009)

Molecular motors convert chemical energy derived from the hydrolysis of adenosine triphosphate (ATP) into
mechanical energy. A well-studied model of a molecular motor is the flashing ratchet model. We show that this
model exhibits a fluctuation relation known as the Gallavotti-Cohen symmetry. Our study highlights the fact
that the symmetry is present only if the chemical and mechanical degrees of freedom are both included in the

description.
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Molecular motors are subject to intense study both from
biological and technological point of view [1,2]. These re-
markable nanomachines are enzymes capable of converting
chemical energy derived from ATP hydrolysis into mechani-
cal work. They typically operate far from equilibrium, in a
regime where the usual thermodynamical laws do not apply.
Generically such motors are modeled either in terms of con-
tinuous flashing ratchets [3,4] or by a master equation on a
discrete space [3,6]. Recently, a general organizing principle
for nonequilibrium systems has emerged which is known un-
der the name of fluctuation relations [7,8]. These relations,
which hold for nonequilibrium steady states, can be seen as
macroscopic consequences of generalized detailed balance
conditions, which themselves arise due to the invariance un-
der time reversal of the dynamics at the microscopic scale
[9].
An interesting ground to apply these concepts is the field
of molecular motors [10-16]. The fluctuation relations im-
pose thermodynamic constraints on the operation of these
machines, particularly in regimes arbitrary far from equilib-
rium. Near equilibrium, they lead to Einstein and Onsager
relations. For nonequilibrium steady states, they can be used
to quantify deviations from Einstein and Onsager relations as
we have shown in Refs. [13,14].
In this paper, we investigate fluctuation relations for con-
tinuous ratchet models. We first study a purely mechanical
ratchet (model I), which applies to the translocation of a
polymer through a pore [17]. We then consider a flashing
ratchet (model II), which applies to molecular motors [3].
Using a method inspired by Refs. [7,18], we show that the
Gallavotti-Cohen symmetry is always present in model I, but
we emphasize that in model II the symmetry exists only if
the chemical and mechanical degrees of freedom of the mo-
tor are both included in the description.
Let us first consider a random walker in a periodic poten-
tial subject to an external force F (model I) [2,19]. The cor-
responding Fokker-Planck equation is
JP a[ap U'(x)-F }
—=Dy—| —+——7—P], (1)
ot dx| ox kgT

where U(x) is a periodic potential U(x+a)=U(x) and a is the

period. This equation describes the stochastic dynamics of a
particle in the effective potential U,z(x)=U(x)—Fx. By solv-
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ing Eq. (1) with periodic boundary conditions [17,19], it can
be readily proven that the system reaches a stationary state
with a uniform current J in the long-time limit. This current
is nonvanishing if a nonzero force is applied. When F=0,
there is no tilt in the potential, /=0 and the stationary prob-
ability is given by the equilibrium Boltzmann-Gibbs factor.

We call x(r) the position of the ratchet at time r knowing
that the ratchet was located at x(0)=0 at time r=0, which we
decompose as x=(n+{)a where n is an integer and
0={<1. The stationary current J is related to the average
position x(z) by J =lim,_,mﬂ[m, i.e., J is the mean speed of
the ratchet in the long-time limit. More generally we are
interested in the higher cumulants of x(z) when r— . It is
useful to define the generating function

FA(&0) = 2 expIN(¢+n)]P[(n + Da,r]. )

The time evolution of this generating function F) is obtained
by summing over Eq. (1). This leads to the following equa-
tion:

dF,\({,1)

PP LNF\(L,1), 3)

where the deformed differential operator £(\) acts on a pe-
riodic function ®(,7) of period 1 as follows:

azc(x)cb L T S AN T
- = +_ - - + 9
D, aé*Z AL eff AL eff

(4)

where ﬁéﬁzaﬁerff/ kgT and the left-hand side of Eq. (4) is
proportional to the inverse of the characteristic time
T=a*/D,. A similar procedure exists in solid-state physics,
where periodic functions are expanded in eigenfunctions of
Bloch form, which are eigenfunctions of an operator similar
to L(N) [17].

The operator £(\) has the following fundamental conju-
gation property:

"WITL(N (WD) = L= f =MD, (5)

with f=Fa/kpT the normalized force. This property implies
that operators £(\) and £"(—f—\) are adjoint to each other,
and thus have the same spectrum. If we call ®(\) the largest
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FIG. 1. Sketch of the sawtooth potential U(x). The potential has
period a, aa is the distance from a minimum to the next maximum
on the right, and U is the maximum of the potential.

eigenvalue of L£(\), we obtain from Eq. (5) that ®(\) satis-
fies the Gallavotti-Cohen symmetry

O =0(-f-N). (6)

In fact, this symmetry holds for all eigenvalues. For the spe-
cial case f=0, the conjugation relation (5) reduces to the
detailed balance property [18]. Finally, it is important to note
that ®(\) is the generating function for the cumulants of x(z).

We have calculated numerically the function ®(\) for the
case of the sawtooth potential shown in Fig. 1, with a barrier
height U, on order of several kzT [17]. This function was
obtained by first discretizing the operator £(\) and then cal-
culating its largest eigenvalue using the Ritz variational
method. This method does not require finding a basis specific
to the chosen potential, in contrast to what was done in Ref.
[20]. for the cosine potential. Our numerical method can
handle any shape of the potential.

The form of O(f7) with =\/f is shown in Fig. 2 for
different values of the normalized force f. The symmetry of
all the curves with respect to 7=1/2 corresponds to the sym-
metry of Eq. (6). At weak force, @(f7) has a parabolic shape
associated with Gaussian fluctuations, whereas at higher
forces a flattening occurs associated with non-Gaussian fluc-
tuations [10,14,20]. By numerically taking derivatives of
O(N\) with respect to A near A=0, we recover the velocity
obtained by directly solving Eq. (1) [17,19].

We now come to the derivation of the Gallavotti-Cohen
symmetry for the flashing ratchet model (model II). In this
model [3,21,22], the motor has two internal states i=1,2,
which are described by two time-independent potentials
U(x). We assume that these potentials are periodic with a
common period a. The probability density for the motor to
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FIG. 2. Normalized eigenvalue 70 (f7) (with 7=a?/D,) as func-
tion of # for different values of the normalized force f; from top to
bottom, f=5, f=10, and f=20. The parameters of the potential are
a=0.7, Uy/kpT=5. The symmetry of all the curves with respect to
n=-1/2 is Gallavotti-Cohen symmetry expected for model I.
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be at position x at time 7 and in state i is P;(x,7). The dy-
namics of the model is described by

P, al,

—+—=—wXx)P; + wr,(x)P

o T ox 1(XD)P + 0y (x) Py

P, dJ,

— + — = w(X)P| — wy(x)Ps, (7)
ot ox

where w,(x) and w,(x) are space dependent transition rates,
and the local currents J; are defined by

aP; 1 (9U;
Ji==Dy| —+—\| —-F|P;|, (8)
dx  kgT\ ox

with D, the diffusion coefficient of the motor and F a non-
conservative force acting on the motor. The transition rates
can be modeled using standard kinetics for the different
chemical pathways between the two states of the motor [21]

w;(x) =[w(x) + gl/(x)eA“]e(Ul(x)_f")/kBT,

(%) = [@(x) + x) Je! 2T )

where Au=Af/kgT is the normalized chemical potential and
Ajx the chemical potential associated with ATP hydrolysis.
Terms proportional to w(x) are associated with thermal tran-
sitions, while terms proportional to ¢{(x) correspond to tran-
sitions induced by ATP hydrolysis. One could easily intro-
duce more chemical pathways than the ones considered here
[21] but this extension is not essential for the present argu-
ment. Note that the way the force enters the rates is unam-
biguous in such a continuous model [5,14].

Note that Eq. (7) can be rewritten as a matrix £ of opera-

tors
J(P P Li-w P
se)=eln)-(0 L)) oo
ot P2 P2 (O] EZ—U)Z P2

where the action of the operator £; on a function ®(x,1) is
given by

PP a (U{—F@)I a1

L;®=Dy— +Dy—
: Oox2 " O\ kgT

When F=0 and Au=0, the system is at equilibrium and

U,-U
P(T) (12)
B

@) _

wl(x) -

In this case, the stationary solution of the system (7) is the
Boltzmann distribution for P; and P,, the currents J; and J,
vanish and there is no global displacement of the motor. If
both F and A do not vanish, then the system is out of
equilibrium and nonvanishing currents can appear.

If the switching between the two potentials occurs only by
thermal transitions, i.e., when Au=0, the rates satisfy the
detailed balance condition of Eq. (12), even in the presence
of a nonzero force F. The Gallavotti-Cohen symmetry fol-
lows by considering a 2X2 diagonal matrix of operators
L;(\) of the form (4). The symmetry is indeed present as
shown in the solid curves of Fig. 3. In the general case how-
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FIG. 3. Normalized eigenvalue 7@(f7) as function of % for a
normalized force f=5 (top two curves) and f=10 (bottom two
curves) for the flashing ratchet (model II). The solid curves corre-
spond to the case where the switching rates satisfy detailed balance
which leads to the Gallavotti-Cohen symmetry. The curves with
filled symbols (f=5) and empty symbols (f=10) correspond to
cases where detailed balance is broken with constant switching
rates w;(x)=w,(x)=107"" and with the same potentials. The lack of
symmetry in these curves with respect to »=-1/2 is apparent es-
pecially near p=-1.

ever, where the normalized force f and chemical-potential
A are both nonzero, the relation (12) is no more satisfied
and the Gallavotti-Cohen relation (6) is not valid. This is
shown in the curves with symbols in Fig. 3 where for sim-
plicity we took constant switching rates w;=w,=107"". For
all the curves of this figure, we took a sawtooth potential U,
with the same parameters as in Fig. 2, and a potential U,
constant in space. The breaking of the symmetry of Eq. (6)
can be interpreted as a result of the existence of internal
degrees of freedom, similarly to the violations discussed in
Ref. [23].

To establish a fluctuation relation for the flashing ratchet
model, one must consider both the mechanical and chemical
currents present [13,16].

Let us introduce the probability density P;(x,q;?) associ-
ated with the probability that at time ¢ the ratchet is in the
internal state 7, at position x and that g chemical units of ATP
have been consumed. The evolution equations for this prob-
ability density is obtained by modifying Eq. (7) after taking
into account the dynamics of the discrete variable g. We have

W =[L, - 0,(0)]P(x,q,0) + 05" (x) Po(x,q + 1,1)
+ @3(xX)Py(x,q,1) (13)
W =[L; - 0)(x)]Py(x,q.1) + &) (x) P, (x,q.1)
+ 01 (0)Py(x,g = 1,1). (14)

We use a notation similar to that of Ref. [14], where
w|(x) denotes the transition rate at position x from the
internal state { with /=—1,0,1 ATP molecules consumed.
This leads to  w)=we kT )= elV2 /VksT
wi = we(Ulffx)/kBT+AM, and wgl = [/je(UZ_fx)/kBT, with
0 1 0 -1

o1 (x)=w,(x)+o;(x) and 0,(x)=w;(x)+w; (x).

As above we introduce two generating functions F ) ,
and F, ) ,, depending on two parameters A and y which are
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FIG. 4. For normalized

model II, the
TA(fn,-Aw/2) is shown as function of 7. The dashed curve cor-
responds to f=5 and Au=0, the solid curve corresponds to f=5 and
Ap=10, and the dotted curve corresponds to f=2 and Au=10. The
symmetry is recovered in all cases in this description which in-
cludes both the mechanical and chemical degrees of freedom.

eigenvalue

conjugate variables to the position of the ratchet and to the
ATP counter g. We have for i=1,2,

Fi,)\,'y(g’t) = 2 eyqz e)\({+n)P[[a(g+ ”)"]J]
q

n

(15)

The evolution equation for these generating functions is ob-
tained from Eq. (15) as

J(F F
—( ‘*”)=m,w< '*”), (16)
ZAVET Fay
with the operator L£(\,y) decomposed as
L\, y)=D\) + M), (17)

with D(\) the diagonal matrix diag[£;(N\)—w;,L,(\)—w,],
and

My) ( ’ w2+wgle"7) (18)

V= o) + we” 0
Consider now the diagonal matrix Q defined by
diag(e VT ¢=U2/ksT) By direct calculation, one can check

that Q~'M(y)Q=N'(-Au—7). From Eq. (5), one obtains
07'D(y)Q=D(-Au~-7v). By combining these two equa-
tions, we conclude that

Q' LIYQ=LT(=f =\~ Ap=1), (19)
which leads to the Gallavotti-Cohen symmetry
A()\9 7):A(_f_)\’_AM_ ’y)9 (20)

where A(N,y) is the largest eigenvalue of L(\,y). If we
consider only the mechanical displacement of the ratchet, the
relevant eigenvalue ®(\) is given by ®(\)=A(\,0), which
clearly does not satisfy the fluctuation relation as shown in
Fig. 3. In Fig. 4, we have computed A(f7,—Au/2) for the
same potentials and with rates wf(x) of the form given above
with w(x)=57" and ¢(x)=107"". We have verified that in all
cases the symmetry of Eq. (20) holds.

In this paper, we have shown that the large deviation
function of the mechano-chemical currents obeys the
Gallavotti-Cohen relation. Another related but different sym-
metry relation for the entropy production exists under more
general conditions [7,10,15,18,20]. We have shown here that
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the symmetry for the currents is valid for the flashing ratchet
model when internal degrees of freedom are taken into ac-
count. This raises a fundamental question concerning the va-
lidity of fluctuations relations and their applicability to other
types of ratchet models [2,4]. Other mechanisms exist which
are known to produce deviations from fluctuations relations
[23], and it would be interesting to investigate whether fluc-
tuations relations can always be restored by a suitable modi-
fication of the dynamics.

On the experimental side, it would be very interesting to
investigate fluctuations relations for molecular motors using
single molecule experiments, in a way similar to what was
achieved in colloidal beads or biopolymers experiments [8].
Using fluorescently labeled ATP molecules, recent experi-
ments with myosin 5a and with the F,— F rotary motor, aim

PHYSICAL REVIEW E 80, 021923 (2009)

at simultaneous recording of the turnover of single fluores-
cent ATP molecules and the resulting mechanical steps of the
molecular motor [24]. These exciting results indicate that a
simultaneous measurement of the values of the mechanical
and chemical variable of the motor is achievable, and there-
fore from the statistics of such measurements it is possible to
construct P(x,q,t). With enough statistics of such data, one
could thus in principle verify Eq. (20). Such a verification
would confirm that the Gallavotti-Cohen symmetry is a ther-
modynamic constraint that plays an essential role in the
mechano-chemical coupling of molecular motors.
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